Epigenetic Regulation of Depot-Specific Gene Expression in Adipose Tissue
نویسندگان
چکیده
In humans, adipose tissue is distributed in subcutaneous abdominal and subcutaneous gluteal depots that comprise a variety of functional differences. Whereas energy storage in gluteal adipose tissue has been shown to mediate a protective effect, an increase of abdominal adipose tissue is associated with metabolic disorders. However, the molecular basis of depot-specific characteristics is not completely understood yet. Using array-based analyses of transcription profiles, we identified a specific set of genes that was differentially expressed between subcutaneous abdominal and gluteal adipose tissue. To investigate the role of epigenetic regulation in depot-specific gene expression, we additionally analyzed genome-wide DNA methylation patterns in abdominal and gluteal depots. By combining both data sets, we identified a highly significant set of depot-specifically expressed genes that appear to be epigenetically regulated. Interestingly, the majority of these genes form part of the homeobox gene family. Moreover, genes involved in fatty acid metabolism were also differentially expressed. Therefore we suppose that changes in gene expression profiles might account for depot-specific differences in lipid composition. Indeed, triglycerides and fatty acids of abdominal adipose tissue were more saturated compared to triglycerides and fatty acids in gluteal adipose tissue. Taken together, our results uncover clear differences between abdominal and gluteal adipose tissue on the gene expression and DNA methylation level as well as in fatty acid composition. Therefore, a detailed molecular characterization of adipose tissue depots will be essential to develop new treatment strategies for metabolic syndrome associated complications.
منابع مشابه
Effect of Thyrotoxicosis on Gene Expression of Hydrogen Sulfide-producing Enzymes in Epididymal Adipose Tissue of Male Rats
Introduction: Thyroid hormones are involved in the regulation of hydrogen sulfide (H2S) biosynthesis. The aim of this study is to determine effects of thyrotoxicosis on H2S levels and mRNA expression of cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) in the adipose tissue of rat. Materials and Methods: Male rats were divided into the ...
متن کاملFAS and ACC dysfunction in visceral Adipose Tissue
Background and Aim: A great interest for determining the particular mechanisms underlying lipogenesis and adipogenesis has been raised among researchers in order to fight obesity. We aimed to investigate the gene expression of FAS and its role in regulation of lipogenesis and adipogenesis in visceral adipose tissues from obese and normal-weight subjects. materials and Methods: A total of.parti...
متن کاملP-70: Evidence for Differential Gene Expression of A Major EpigeneticModifier Enzyme, de novo DNA Methyltransferase 3b, through Vitrification of Mouse Ovary Tissue
Background: Ovarian tissue cryopreservation is a feasible method to preserve female reproductive potential, especially in young patients with cancer or in women at risk of premature ovarian failure. Vitrification has recently emerged as a new trend for biological specimen preservation. On the other hand, gene expression that changes during vitrification can influence oocyte maturation and need ...
متن کاملO-31: Epigenetic Aberration of HOXA10 Gene in Human Endometrium throughout The Menstrual Cycle in Endometriosis
Background: Epigenetic aberration such as DNA methylation and histone modifications appear to be involved in various diseases such as Endometriosis. Here, we investigated the epigenetic regulation of HOXA10 promoter, as a crucial gene, responsible for uterine organogenesis, functional endometrial differentiation and endometrial receptivity, and its correlation with mRNA expression of this gene ...
متن کاملMaternal obesity programs increased leptin gene expression in rat male offspring via epigenetic modifications in a depot-specific manner
OBJECTIVE According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and accelerated growth in neonates predispose offspring to white adipose tissue (WAT) accumulation. In rodents, adipogenesis mainly develops during lactation. The mechanisms underlying the phenomenon known as developmental programming remain elusive. We previously reported that adult rat offs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013